Архив рубрики: Блоки подшипниковые уплотнительные

Модернизация химических насосов с применением БПУ на примере ХБ 160-210

Модернизация химических насосов ХБ, ХБЕ, Х, АХ и других с применением БПУ (блоков подшипниковых уплотнительных). В видео рассказывается об особенностях модернизации химических насосов,  а также результаты внедрения современных технических решений с применением подшипниковых уплотнительных блоков разработки и производства ООО НПЦ «АНОД»

Отзыв Павлодарского Нефтехимического завода о работе модернизированных насосов Н-125А, Н-124

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса, герметичный насос, импортозамещение

Отзыв Павлодарского НХЗ о работе модернизированных насосов Н-125А, Н-124

Настоящий отзыв подтверждает, что в октябре месяце 2014 года и феврале 2015 года, предприятием ООО «АНОД-ЦЕНТР», в ТОО «ПНХЗ» г. Павлодар, была осуществлена поставка и произведены работы по шеф-монтажу и пуско-наладке блоков подшипниковых уплотнительных 90 БПУ 33 00.00-04 на насосы технологических позиций Н-125а и Н-124 цеха №1. В настоящий момент насосы: поз. Н-125А и Н-124 эксплуатируются с блоками 90БПУ33.00.00-04 в штатном режиме, рабочие параметры в норме.
Работы были выполнены с высоким качеством, на уровне необходимых стандартов.
Указанные агрегаты были изготовлены в необходимые сроки, качество продукции не уступает качеству агрегатов основных российских производителей насосного оборудования.
Заместитель генерального директора
по производству — главный инженер О. Алсеитов

Модернизация герметичных насосов и насосов с магнитной муфтой

ГОСТ 31839-2012 обязывает применять герметичные насосы при перекачке жидкостей категории IIС во взрывоопасных и пожароопасных зонах. Зачастую на практике герметичные насосы применяются там, где допускается применение насосов с двойными торцовыми уплотнениями.

Специалисты ООО НПЦ «АНОД» разработали варианты модернизации герметичных насосных агрегатов.

герметичные насосы, насосы с магнитной муфтой ремонт насосв, модернизация насосов, импортозамещение насосов, замена насосных агрегатов, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел

Модернизированный герметичный насос Klaus Union с применением БПУ

Конструктивно модернизированный насосный агрегат представляет собой гидравлическую часть центробежного насоса с пристыкованным к ней блоком подшипниковым уплотнительным, стойку с оборудованием системы вспомогательной, пластинчатую муфту и электропривод, собранные на единой раме.

БПУ представляет собой цилиндрический корпус, по концам которого установлены одинарные уплотнения, выполняющие функции контурной и атмосферной ступеней двойного уплотнения. Между уплотнениями располагаются опорные и упорные подшипники скольжения, охлаждаемые и смазываемые затворной жидкостью. Материалы подшипников скольжения и пар трения уплотнений: карбид кремния, карбид вольфрама, углеграфиты и закаленная сталь в различных комбинациях — обеспечивают надежную работу трущихся пар.

В модернизированных насосных агрегатах ведется контроль герметичности контура затворной жидкости, что позволяет предупредить и полностью исключить утечки перекачиваемой среды в атмосферу.

Характерным примером является модернизация насосного агрегата с магнитной муфтой фирмы HMD. Данный агрегат перекачивает смесь бензина с толуолом, при температурах 180°…260°С.

герметичные насосы, насосы с магнитной муфтой ремонт насосв, модернизация насосов, импортозамещение насосов, замена насосных агрегатов, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел

Модернизированный насос HMD с применение блока БПУ

Оставляя проточную часть насоса с рабочим колесом неизменной, была произведена замена опорной части насоса и магнитной муфты на блок подшипниковый уплотнительный (БПУ) и пластинчатую муфту.

В результате применения БПУ с автономным контуром смазки и охлаждения кардинально изменились условия работы подшипников скольжения. Теперь подшипники работают в чистой затворной жидкости с хорошими смазывающими свойствами, а не в перекачиваемой среде, где возможны прохваты, абразивные частицы, коррозионный износ.

Исключённые потери, связанные с использованием магнитной муфты и рециркуляцией части перекачиваемой среды на смазку подшипников, позволили снизить потребляемую мощность со 120 кВт до 97 кВт, а предприятию сэкономить сотни тысяч рублей в год только на электроэнергии.

Межремонтный пробег увеличился в несколько раз, соответственно уменьшены затраты связанные с ремонтом насоса.

Обеспечение надежной работы оборудования при минимизации затрат и сроков на техническое обслуживание и ремонт в условиях санкций

Маковей В.С. ООО «АНОД-ЦЕНТР», Москва

Кулдышев А.К. ООО «НПЦ «Анод», Нижний Новгород

Походяев С.Б. ООО «Анод-Теплообменный центр», Нижний Новгород

Организация многогранной деятельности службы главного механика невозможна без четкого определения целевых установок по основным направлениям жизненного цикла оборудования при единой стратегической направленности — обеспечение эффективного ведения производственного процесса посредством гарантировано безотказной работы оборудования на весь период принятого межремонтного пробега.

Процесс поддержания оборудования в работоспособном состоянии, а не просто проведение ремонтов и обслуживания в обозначенные сроки с минимальными затратами в новых условиях приобретает существенно иной смысл.

При этом на первый план выдвигаются проблемы всестороннего обеспечения проводимых мероприятий, планирование их подготовки и проведения.

Новая смысловая нагрузка процесса поддержания оборудования в рабочем состоянии обусловлена реализацией концепции модернизации отрасли в частности приоритетной ставкой на нероссийские технологии и как следствие оборудования.

Объективно состояние дел охарактеризовал Е.М. Примаков в своей работе. «Россия надежды и тревоги»:

«Торгово-промышленная палата провела социологическое исследование, результаты которого показали, что только 13% закупаемого в новых условиях оборудования соответствует характеристикам сегодняшнего и тем более завтрашнего дня. Просто-напросто покупали по дешевой цене все что уже устарело».

В создавшихся условиях процесс поддержания оборудования в работоспособном состоянии не может быть ограничен проведением технического обслуживания и ремонта без существенной модернизации.

Именно модернизация, а не импортозамещение и локализация производства устаревшего — является основой стратегией работы с дефектами и предпосылками к отказам.

Уповать на так называемый «обратный инжиниринг» в условиях отсутствия передовых технологий, которыми наши партнеры не спешат делиться, крайне опрометчиво – на существующем оборудовании в машиностроительной отрасли, мы не в состоянии воспроизвести даже устаревшие зарубежные аналоги.

Выход из создавшейся ситуации состоит в опоре на собственные российские прогрессивные технические решения, адоптированные к имеющемуся оборудованию и технологиям.

Именно такое оборудование должно быть положено в основу модернизации для ликвидации импортной зависимости и устранения заведомо некорректных технических предложений реализованных в последние годы в нефте и газопереработке.

Остановимся на отдельных мифах, о незаменимости и абсолютной зависимости наших заводов от импортных комплектующих, в части динамического и теплообменного оборудования.

Ответственно заявляем, что для группы компаний «АНОД» нет таких тепловых и динамических задач в отрасли, которые не могут быть решены, не прибегая к импорту.

В частности, Научно-производственный центр «АНОД» способен удовлетворить запросы по герметизации насосного и компрессорного оборудования любой сложности на основе собственных технических решений и производимого оборудования.

Торцевые уплотнения, торцевые уплотнения для насосов, купить торцевое уплотнение, торцевое уплотнение вала, уплотнение вала, уплотнение вала насоса, уплотнение торцевое к насосу, сильфонное уплотнение, торцевое уплотнение вала насоса, торцовые уплотнения, торцовые уплотнения валов, анод уплотнения, механическое уплотнение, насосы и уплотнения, насосы и оборудование, импортозамещение в России, импортозамещение в промышленности, пары трения, химические уплотнения, уплотнения для мешалок, утд, химические аппараты, УТ, УТТ, двойное торцевое уплотнение, газовое уплотнение, сухие уплотнения

Рис. 1. Торцевые уплотнения НПЦ АНОД

Сдерживающим фактором в этой области является достоверная постановка задачи, что не всегда возможно без разборки агрегата для определения линейных размеров рабочего пространства (рис. 1).

У нас нет необходимости что-либо копировать или воспроизводить, но без четкого знания параметров процесса предложить оборудование оптимальное для модернизации сложно.

обвязка торцевых уплотнений, торцевые уплотнения, системы уплотнения, системы автоматизации, контроль работы насоса, система обслуживания, система обслуживания насоса, бачок торцевого уплотнения

Рис. 2. Plan 53B обвязки торцевого уплотнения по API682

Характерным примером нерационального, надуманного и откровенно затратного решения задачи герметизации может служить применение Plan 53B (рис. 2) там где объективно достаточно Plan 53А.

Применение гидроаккумулятора мембранного типа, который кстати не производится в СНГ, влечет увеличение массы системы обеспечения работоспособности торцового уплотнения в два раза и требует насосной станции.

При этом стоимость гидроаккумулятора в четыре раза превышает стоимость собственно торцового уплотнения, а применить его предписано на насосном агрегате перекачивающем воду при температуре 36°С и давлением 15 атм. т.е. там где одинарного уплотнения вполне достаточно.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 3. Модернизация герметичного насоса посредством применения БПУ

Примером рационального технического решения по модернизации насосных агрегатов считаем применение блоков подшипниковых уплотнительных (БПУ) (рис. 3) на основе подшипников скольжения.

Применение БПУ позволяет там, где это допустимо модернизировать герметичные насосы и насосы с электромагнитной муфтой, не прибегая к дорогостоящему восстановлению традиционно ненадежных узлов.

К сожалению, как активные пользователи подшипниковых узлов, вынуждены констатировать, что подшипники качения российского производства уступают по качеству зарубежным, особенно на нагруженных позициях – эта проблема также может быть решена посредством применения БПУ.

Существенная экономия денежных средств и времени на проведение ТО и Р может быть достигнута при тесном сотрудничестве конечных потребителей и производителей оборудования.

Любые альтернативные предложения требуют проработки, т.е. времени и здесь крайне важно организовать взаимодействие на ранней стадии формирования плана ремонтов для обеспечения всестороннего анализа дефектов и предпосылок к отказам. Наличие стратегии, глубоко продуманных планов ТО и Р существенно снижают сроки реализации проектов модернизации и риск отказов в работе оборудования.

рис. 4. Модернизация АВО

рис. 4. Модернизация АВО

В качестве примера плодотворного сотрудничества можно привести модернизацию агрегатов воздушного охлаждения (АВО) любых производителей посредством применения секций на основе змеевиков малого радиуса гиба (ЗМРГ) (рис 4).

Своевременная и достоверная формализация тепловых задач позволила предложить варианты технических решений и оборудования на всю линейку АВО задействованных в технологическом процессе переработки углеводородов.

При этом сопоставление риска отказов и затрат на ремонт (см. модернизацию) позволили определить справедливую цену, а полученный эффект – окупит затраты.

Отдельного внимания заслуживают вопросы отечественных разработок и отсталости в технико-технологической области.

Разве не настораживает тот факт, что, несмотря некоторые позитивные сдвиги, Россия в целом уступает по объему финансирования науки Германии более чем в 2 раза, Японии – более чем в 4 раза, в 6 раз – Китаю, в 11 раз – Соединенным штатам? Если кто то считает, что задача решаема за счет внутренних затрат компаний, то он ошибается. На научно исследовательские и опытно-конструкторские разработки (НИОКР) наши компании тратят в 4 раза меньше, чем израильские и южнокорейские, в 3 с лишним раза меньше финских и японских.

Стоит заметить, что существующая законодательная база и корпоративные стандарты делают непреодолимыми экономические, юридические и организационные припоны для внедрения новых технических решений.

Отсутствие механизации внедрения и объективной оценки эффективности нововведений позволяют безбедно существовать и диктовать свои условия зарубежным производителям не прибегая к затратам, а тиражируя прошлое в России.

Дополнительные трудности создают наши законодатели, принимая в качестве законов и стандартов переводы совершенно неадаптированных документов зарубежного производства, которые к тому же в странах происхождения носят рекомендательный характер.

В качестве примера приведу Технический регламент Таможенного союза «О безопасности оборудования работающего под избыточным давлением» от 02 июля 2013 года. Следуя данному документу, все бачки системы запирания торцовых уплотнений могут быть отнесены к категории котлонадзорных. а это тысяча и более новых единиц для каждого завода.

Остается ждать предписаний и очередного роста затрат на техническое обслуживание и ремонт.

В заключение от имени группы компаний «АНОД» заверяю, что существующий на предприятиях потенциал и собственная сложившаяся научно-техническая школа позволяют решить любые задачи по ликвидации предпосылок к отказам на нефтеперерабатывающих и нефтехимических предприятиях и оптимизировать затраты на поддержание оборудования в работоспособном состоянии.

Положительная аккредитация АО «РНПК» для ООО «АНОД-ЦЕНТР»

сертификация, аккредитация

Аккредитация РНПК для ООО АНОД-Центр

25 ноября ООО «АНОД-ЦЕНТР» прошло процедуру аккредитации для поставок на АО «РНПК»

Нефтяные консольные насосы с блоками подшипниковыми уплотнительными (БПУ)

С каждым годом к насосам нефтехимических производств предъявляются все более высокие требования по безопасности и надежности. Однако на многих предприятиях отрасли еще находится большое количество насосов консольного типа, ресурс которых давно выработан, которые неоднократно подвергалось ремонту подшипниковых узлов, но вместе с этим имеют еще работоспособную проточную часть. В этой ситуации НПЦ «АНОД» предлагает модернизировать данные насосы, дать им фактически «вторую жизнь» при относительно невысоких материальных затратах.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис.1. Схема нефтяного консольного насоса НК

Модернизации могут быть подвержены практически любые консольные нефтяные насосы (рисунок 1), поскольку от исходного насоса остаются лишь спиральный отвод, который демонтировать с рамы и отсоединять от технологических трубопроводов вовсе не обязательно, крышка насоса и рабочее колесо.

В зависимости от условий эксплуатации, химического состава и свойств перекачиваемой жидкости НПЦ «АНОД» разработал несколько конструктивных схем модернизации насосов. В основе всех схем лежит один принцип. Вместо подшипников качения, широко использующихся в насосостроении, применяются подшипники скольжения, долговечность и надежность которых значительно превосходит подшипники качения. Первая схема, изображенная на рисунке 2, наиболее простая – для насосов, перекачивающих чистые неагрессивные нефтепродукты с температурой, не превышающей 120ºС, имеющие хорошие смазывающие свойства, такие как бензины, минеральные масла, дизельное топливо.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 2. Схема модернизированного консольного нефтяного насоса НК

Как видно из рисунка, опоры скольжения и упорный подшипник находятся в перекачиваемой среде. Приводной конец вала герметизируется двойным торцевым уплотнением или торцевым уплотнением тандем. В данном случае это серийные торцевые уплотнения НПЦ «АНОД» — уплотнения для нефтяных насосов УТД и УТТ соответственно.

Упорный подшипник, воспринимающий осевую нагрузку находится между значительно разнесенными опорными подшипниками. Расстояние между опорами (база вала) при такой схеме увеличивается практически вдвое по сравнению с традиционной конструкцией на подшипниках качения. Передний подшипник находится непосредственно около рабочего колеса, уменьшая консольный участок вала. Отношение длины консольного участка вала к величине базы при этом значительно уменьшается. Изгибающие усилия, действующие при работе насосе на вал снижаются.

В зависимости от конструкции насоса такая модернизация может потребовать доработки крышки насоса.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 3. Схема модернизации консольного нефтяного насоса НК

Вторая схема модернизации, изображенная на рисунке 3, применяется в тех случаях, когда перекачиваемая жидкость содержит большой объем механических частиц и нет возможности доработать крышку насоса.

Расположение опорных и упорных подшипников здесь такое же, главное отличие – компоновка торцевого уплотнения. Здесь не применяется классическое двойное торцевое уплотнение, имеющее две уплотнительные ступени, между которыми подается затворная жидкость под давлением, превышающим давление перекачиваемой жидкости. В нашем случае роль ступеней двойного торцевого уплотнения играют два одинарных торцевых уплотнения, герметизирующих подшипниковый блок с двух сторон. Подшипники размешены в камере образованной уплотнениями и корпусом, в которую и подается затворная жидкость. Такая схема обеспечивает стабильную работу подшипников скольжения на чистой среде.

Эта схема имеет и свой недостаток – увеличенную консоль (по сравнению с первой схемой), однако, она все же меньше, чем до модернизации.

насосный агрегат, насос, центробежный насос, подшипник скольжения, блок подшипниковый уплотнительный, блок БПУ, модернизация оборудования, силовой узел, торцевое уплотнение, упорный подшипник, опорный подшипник, ремонт насосов, как улучшить насос, насос консольный, причины выхода из строя насосов, замена насоса

Рис. 4. Схема модернизации консольного нефтяного насоса НК для высоких рабочих температур

Следующая схема (рисунок 4) применима к насосам, перекачивающим жидкости с температурой 200…450ºС. Отличие её от второй схемы лишь в том, что в сальниковую камеру насоса устанавливается теплообменник такой же конструкции, что и в двойных торцевых уплотнениях типа УТТХ и УТДХ. Данный теплообменник обладает достаточной эффективностью, чтобы снизить температуру в районе подшипникового блока до 70…80ºС. Такая температура уже приемлема для материала втулок подшипников, и резиновых колец.

Подшипники скольжения, разработанные в НПЦ «АНОД»  имеют как традиционные, так и оригинальные элементы. Конструкция упорного подшипника позволяет ему воспринимать значительные усилия. Невращающаяся ступень упорного подшипника состоит из нескольких колодок опирающихся на металлическое основание. Колодки укладываются в сепаратор, обеспечивающий незначительное их свободное перемещение. Конструкция вспомогательной ступени, работающая лишь при пуске – остановке, значительно упрощенна. Вращающиеся элементы подшипника состоят из металлических дисков, установленных на ступице, которая крепится на валу насоса.

Опорный подшипник состоит из вращающейся и неподвижной втулки. Вращающаяся втулка закреплена на валу, а невращающаяся запрессована в корпусе подшипника. Корпус подшипника имеет кольцевой поясок для самоустановки.

Материалы, используемые в подшипниковом блоке, позволяют модернизировать насосы, перекачиваемые слабоагрессивные жидкости. Корпусные элементы подшипникового блока изготовлены из стали 20Х13, вращающиеся втулки подшипников и диски упорного подшипника из стали 95Х18. Ответные втулки опорных подшипников, вкладыши и накладки упорного подшипника изготовлены из композиционного графито — фторопластового материала.

Одним из пунктов модернизации насосов является создание вспомогательных систем. В первой схеме подшипники работают на перекачиваемой среде, в состав обслуживающей системы входят: фильтр и теплообменник. Конечно, можно значительно упростить систему и исключить эти элементы, но это возможно лишь в случае, когда перекачиваемая жидкость имеет температуру ниже 70ºС и содержание механических примесей меньше 1%.

Насосы, модернизированные по второй и третьей схеме, имеют обвязку двойного торцового уплотнения. Разница лишь в том, что затворная жидкость подается к каждому подшипнику отдельно, что позволяет обеспечить более эффективный отвод тепла от подшипниковых поверхностей и контроль их температурного состояния. В «горячих» асосах дополнительно установлена система охлаждения сальниковой камеры.

В заключение стоит отметить, что насосные агрегаты, оборудованные подшипниками скольжения, несомненно, имеют ряд преимуществ перед традиционными конструкциями. Это простота обслуживания, высокая надежность, повышенный ресурс. К тому же, такая модернизация – один из путей обновления парка насосного оборудования.

Установленный в ООО «Лукойл – Нижегороднефтеоргсинтез» модернизированный насос НК 65/35-70 на перекачке бензина имеет очень низкие значения виброскорости (в 3 раза меньше традиционных), низкий шум и температуру затворной жидкости на выходе из блока агрегата не более 40ºС, что позволяет долго и безупречно работать подшипниковым уздам и торцевым уплотнениям.

Обращаем внимание, что ООО НПЦ «АНОД» не только модернизирует старые насосы, но и выпускает новые консольные насосные агрегаты серии 5-АНГК с блоками подшипниковыми уплотнительными (БПУ), с проточными частями как отечественного, так и зарубежного производства.

Модернизация масляной системы высокого давления в компрессорах путем применения двойных торцевых уплотнений

В ранее опубликованных материалах ООО НПЦ «АНОД» представил ряд статей, посвященных тенденциям развития уплотнительной техники, используемой в нагнетателях и компрессорах, перекачивающих природный газ. В них предложены последние разработки торцовых уплотнений и принципиальные схемы их применения в составе компрессорной установки. Основное внимание было уделено использованию двойных торцовых уплотнений и перспективных блоков подшипниковых уплотнительных (БПУ).
С внедрением в масляные системы компрессоров двойных торцовых уплотнений взамен лабиринтных и щелевых уплотнений достигнуты высокие показатели по межремонтному периоду: в среднем наработка на отказ составляет 25000 ч. При этом значительно снижены утечки масла – с 0,3…0,6 до 0,05…0,1 л/ч на одно уплотнение.
Данная система позволяет реализовать заветную мечту газовиков: при остановах агрегата не требуется сброс перекачиваемого газа из контура нагнетателя.
Изменения коснулись и схемы циркуляции масла через уплотнения.
Традиционной и наиболее распространенной является схема масляной системы, в которой из емкости с запасом масла (маслобака) забирается масло, находящееся под атмосферным давлением. Затем давление поднимается насосами до величины, необходимой для запирания перекачиваемой среды. Смазав и охладив уплотнение, масло сливается в маслобак опять при атмосферном давлении.
При этом потребляемая мощность винтовых насосов высокого давления, используемых в нагнетателях 10 МВт и 16МВт обычно составляет 55 Квт.
Очевидно, что в системе немало единиц оборудования, работающего при высоком давлении. Это бак высокого давления (аккумулятор масла), арматура, трубопроводы и КИП, что позволяет их использовать в предлагаемой нами схеме с двойными торцовыми уплотнениями.

Торцевые уплотнения, купить торцевое уплотнение, торцевое уплотнение вала, уплотнение вала, торцовые уплотнения, торцовые уплотнения валов, анод уплотнения, механическое уплотнение, импортозамещение в России, импортозамещение в промышленности, газовое уплотнение, уплотнение компрессоров, утг, уплотнение масляное

Cхема маслоснабжения с использованием двойных торцовых уплотнений типа УТД

В представленной на рис. 1 схеме масло циркулирует по замкнутому контуру при высоком давлении без сброса его в бак с атмосферным давлением, преодолевая только сопротивление трассы циркуляции. Давление в системе обеспечивается перекачиваемым газом, а мощность насосов расходуется только на прокачку масла при перепаде давления на контурной ступени уплотнения около 0,3 МПа.
Для охлаждения масла в схеме используется теплообменник типа АВО – аппарат воздушного охлаждения, в остальном используется оборудование масляных систем, применяемое в существующих схемах.
Система смазки подшипников компрессора работает по схеме с низким давлением масла аналогично принятой для смазки подшипников привода компрессора.

Предлагаемая схема маслоснабжения компрессоров может быть реализована при создании новых компрессоров или при выполнении модернизации оборудования, находящегося в эксплуатации. При этом доработок роторов не требуется, двойные торцовые уплотнения устанавливаются вместо существующих уплотнений (щелевых или торцовых). В корпусах компрессоров требуется выполнение канала для отвода масла из уплотнения.
Целесообразность использования двойных торцовых уплотнений подтвердила эксплуатация их на КС Касимовского ПХГ, где введенные в эксплуатацию в 2003 г., эти уплотнения проработали без отказов и ремонтов 25000 ч при более 300 пусках/остановах. Утечка масла, определенная в процессе испытаний, составила 0,022 л/ч, что в 6 раз меньше, чем в одинарных уплотнениях.
Реализация такой системы позволяет также:

  • уменьшить затраты на техническое обслуживание;
  • упростить ряд операций по монтажу, наладке и регулировке уплотнений на объекте; исключаются из конструкции дросселирующие узлы и необходимость тщательной подгонки плавающих колец с минимальными радиальными зазорами;
  • обеспечить лучшие вибрационные характеристики в результате эффективного демпфирования колебаний ротора в широком спектре частот;
  • исключить использование винтовых насосов высокого давления;
  • не сбрасывать перекачиваемый газ из контура компрессора и прилегающих трубопроводов при остановах агрегата.

Достоверность и реализуемость предлагаемых решений подтверждается расчетами и опытом эксплуатации двойных уплотнений как в компрессорах, так и в центробежных насосах. Компрессоры Д203ГЦ1-710, изготовленные Сумским МНПО им. М.В. Фрунзе и оснащенные двойными торцовыми уплотнениями 130УТДГ2, эксплуатируются на СОГ-4 (КС «Ямбургская»). При остановке компрессоров в «Резерв» или для технического обслуживания двигателя газ из корпуса нагнетателя не сбрасывается.
Проведенный расчет характеристик и параметров уплотнительных ступеней одного двойного уплотнения компрессора показывает, что общее количество выделяемого тепла составляет 6…7 КВт в зависимости от режимов работы. При отводе этого тепла масло подогревается на 150С при расходе всего 1м³/ч на каждое уплотнение и 2-х м³/ч — на нагнетатель. При принятых потерях в масляной системе около 0,8 МПа мощность насосов на прокачку 2-х уплотнений нагнетателя составит всего 1 КВт.
При скорости потока масла в трубах около 1 м/с достаточно подвести к каждому уплотнению трубопровод с внутренним диаметром Ду 25, а общий трубопровод на два уплотнения выполнить из труб Ду 35, что вполне реализуемо и оставляет перспективы для оптимизации трассы циркуляции.
Расчет аппарата воздушного охлаждения (АВО) показывает, что при температуре охлаждающего воздуха 300С размеры АВО составят 1000х1000х2000 мм. Мощность вентилятора для прокачки воздуха составит 1,5 КВт. При снижении окружающей температуры до 100С вентилятор может быть остановлен, а отвод тепла будет осуществляться при естественной циркуляции воздуха. Ориентировочная стоимость АВО на тепловую мощность около 15 КВт составляет 0,7-0,8 млн. руб в ценах 2012 года.
Таким образом, основная экономия от применения масляной схемы с двойными торцовыми уплотнениями и замкнутой системой высокого давления будет состоять из экономии электроэнергии на прокачку масла через уплотнения (общая электрическая мощность насосов и АВО масла до 4 КВт вместо 55 КВт до модернизации), исключения сброса газа из контура при останове агрегата на техническое обслуживание двигателя и вспомогательного оборудования, сокращения потерь от простоев компрессора, связанных с его остановками на ремонт и профилактическое обслуживание.
При средней наработке нагнетателя 5000 часов в год окупаемость всей масляной системы по предлагаемой схеме составит 2 года, а ежегодная экономия только за счет уменьшения потребления электроэнергии составит 1 млн. руб.

Торцевые уплотнения, купить торцевое уплотнение, торцевое уплотнение вала, уплотнение вала, торцовые уплотнения, торцовые уплотнения валов, анод уплотнения, механическое уплотнение, импортозамещение в России, импортозамещение в промышленности, газовое уплотнение, уплотнение компрессоров, утг, уплотнение масляное

Схема масляной системы с использованием блоков подшипниковых уплотнительных БПУ

На рис.2 представлена принципиально новая концепция масляной системы с использованием блоков подшипниковых уплотнительных (БПУ), аналогично используемым в насосах серии 5-АНГК, производства НПЦ «АНОД», хорошо зарекомендовавших себя в эксплуатации. Блоки БПУ компрессора представляют собой цилиндрические корпуса, содержат опорные и упорные подшипники скольжения, изолированные по торцам от атмосферы и перекачиваемого газа одинарными торцовыми уплотнениями. Система находится под давлением перекачиваемого газа, избыточное давление масла над давлением газа обеспечивается напором циркуляционного насоса. В системе предусматривается теплообменник охлаждения масла. Система имеет меньший состав оборудования по сравнению со схемой на рис.1.
Использование модулей БПУ, по опыту применения их в насосах, позволит:

  • создать новую модификацию компрессоров, при этом максимально использовать существующее оборудование масляных систем;
  • уменьшить затраты на техническое обслуживание, упростить наладку и монтаж блоков, упростив ряд операций по монтажу и регулировке на объекте, (блоки поступают на место эксплуатации в состоянии монтажной готовности);
  • уменьшить эксплуатационные затраты;
  • обеспечить лучшие вибрационные характеристики ввиду демпфирования колебаний ротора в широком спектре частот;
  • увеличить ресурс и межремонтный пробег компрессора, в том числе, за счет применения карбидокремниевых подшипников, невосприимчивых к наличию механических примесей в жидкости, в которой они работают;
  • заменить масло, как затворную и смазывающую жидкость, негорючими, незамерзающими смесями на основе водных растворов, что позволит сделать систему пожаробезопасной, уменьшить эксплуатационные расходы.

Предлагаемые принципиальные схемы масляных систем нагнетателей газа, применение компрессоров с блоками подшипниковыми уплотнительными показывают перспективность их дальнейшей разработки и совершенствования. Использование БПУ при минимальном количестве вспомогательных систем и оборудования обеспечивает высокий КПД системы, позволяет повысить надежность оборудования, увеличить общий ресурс до 100 тыс. часов и наработку на отказ до 5 лет, удовлетворить современным требованиям экономичности и экологичности при исключении утечек перекачиваемого газа в окружающую среду.